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Abstract: Spectrally constrained diffuse optical tomography (SCDOT) is known to improve
reconstruction in diffuse optical imaging; constraining the reconstruction by coupling the optical
properties across multiple wavelengths suppresses artefacts in the resulting reconstructed images.
In other work, L1-norm regularization has been shown to improve certain types of image
reconstruction problems as its sparsity-promoting properties render it robust against noise and
enable the preservation of edges in images, but because the L1-norm is non-differentiable, it is
not always simple to implement. In this work, we show how to incorporate L1 regularization into
SCDOT. Three popular algorithms for L1 regularization are assessed for application in SCDOT:
iteratively reweighted least square algorithm (IRLS), alternating directional method of multipliers
(ADMM), and fast iterative shrinkage-thresholding algorithm (FISTA). We introduce an objective
procedure for determining the regularization parameter in these algorithms and compare their
performance in simulated experiments, and in real data acquired from a tissue phantom. Our
results show that L1 regularization consistently outperforms Tikhonov regularization in this
application, particularly in the presence of noise.
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1. Introduction

Diffuse optical tomography (DOT) is a non-invasive, non-ionizing and low-cost imaging
technology with applications in diagnosing breast cancer [1–3], analyzing brain function for
functional neuroimaging [4–8], and imaging small animals for the study of disease detection,
progression/regression and treatment [9,10]. The imaging process typically involves the injection
of near-infrared (NIR) light in the spectral range of 650−900nm into the imaging volume of interest
(e.g. breast, head, mouse) through sources on the surface of the volume. The transmitted light is
then measured at different locations using detectors that are also on the same volume surface.
A number of measurements are acquired using different source-detector pairs, and the internal
distribution of the tissue’s optical properties is reconstructed using a transport-model-based
image reconstruction algorithm [11].

When a single wavelength continuous-wave (CW) light source is used, only the amplitude of
the fluence can be measured at the surface boundary. In this case, only tissue absorption at that
wavelength can be estimated. However, since the quantities of interest in DOT experiments are
typically chromophore concentrations (mainly oxyhemoglobin (HbO2) and deoxyhemoglobin
(Hb)) rather than the absorption itself, measurements have to be taken at multiple CWwavelengths
in order to provide sufficient information to recover the distributions of these chromophores. There
are two main approaches for reconstruction of chromophore images using multiple wavelength
measurements: non-spectral methods and spectrally constrained methods. Non-spectral methods
(traditional DOT) reconstruct the absorption coefficients at each wavelength independently and
then calculate the chromophore concentrations using Beer’s law [12]. Spectrally constrained DOT
(SCDOT) directly reconstructs the chromophore distributions by using the known absorption
spectra of the chromophores to constrain the reconstruction process. Compared with non-spectral
methods, spectrally constrained reconstruction has been shown to be better at suppressing artefacts
in the resulting reconstructed images and to reduce crosstalk between chromophores and scatter
parameters in breast imaging [13–15]. It has also been shown that boundary measurements at
two NIR wavelengths are sufficient to recover the concentrations of HbO2 and Hb [16].
Reconstruction of images from DOT measurements is a difficult inverse problem. The

limited availability of boundary measurements and the diffusive nature of light propagation in
tissue [11, 17] make the problem non-linear and ill-posed, and iterative solutions with effective
methods for regularization are necessary to obtain unique solutions. Many approaches have been
used [18–20] and quadratic Tikhonov (L2-norm) regularization is the most popular approach as
the solutions to each iteration step can be computed analytically, simplifying the reconstruction
process. This is known to suppress the high-frequency components of the reconstructed image
(normally noise) leading to smooth reconstructions, but this has the drawback of being unable to
preserve sharp features in the reconstructed images [19].
L1-norm regularization has recently been adopted for single wavelength DOT image recon-

struction. Features of interest in DOT, such as tumours in the breast or activations in the brain
are typically spatially localized and in this case the vector corresponding to the difference
in the optical properties relative to the background is sparse with only a few non-zero ele-
ments [21–24]. L1-norm regularization is known to induce sparsity in the solution to inverse
problems [24–26], and has been shown to give essentially the same sparsity as the true sparsity
measure (L0-norm) [27]. Compared to L2 regularization, L1 regularization is less sensitive to
outliers, which correspond to sharp edges in image processing applications [28] and is thus
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able to preserve edge-like features. Both L2 and L1 regularization methods can be solved by
convex optimization schemes where a unique solution can be guaranteed [24, 25]. The more
general Lp-norm (0 < p < 1) regularization schemes have also been studied for DOT image
reconstruction [23, 29], and are also known to introduce sparsity to the reconstructed image [30];
however, Lp regularization is known to be nonconvex meaning that local minima exist [31] and
unique solutions cannot be guaranteed.

In traditional DOT, L1 regularization can indeed be applied to each wavelength independently.
However, there are no guarantees that the solutions will be consistent with Beer’s law. It must be
assumed that the regularizer will have the same sparsifying effect at all wavelengths. This may not
necessarily be true, given that SNR, scattering etc are different. SCDOT can be used to constrain
the solution space to those solutions that are physically plausible. Therefore, reconstruction with
spatial and spectral regularization simultaneously applied will constrain the solution space much
more reliably than their sequential application. To the best of our knowledge, L1-norm has not yet
been used in SCDOT image reconstruction. We introduce a novel algorithm, spectral-L1, which
combines the sparsity-preserving advantages of L1 regularization with the spectral constraints
imposed by coupling optical properties across multiple wavelengths, to solve the inverse problem
for image reconstruction in SCDOT. The key advance is to adapt the DOT reconstruction process
to incorporate efficient methods for solving each iterative step. These are necessary because
the L1-norm is non differentiable and the update terms in the reconstruction process cannot be
computed analytically. We investigate three algorithms for solving the update term: iteratively
reweighted least square algorithm (IRLS) [32], alternating directional method of multipliers
(ADMM) [33–36] and fast iterative shrinkage-thresholding algorithm (FISTA) [37, 38]. All three
methods have been widely used to obtain sparse solutions to linear systems. IRLS and ADMM
are second-order algorithms that require explicit inversion of a large matrix; FISTA is a first-order
algorithm that does not require explicit matrix inversion, but does require a gradient operator to
be constructed.
We adapt the DOT reconstruction process to use these methods for the solution of the

update terms. An automated method to automatically select the regularization parameters is
developed which is based on the L-curve method but is modified for this use-case. Then we
perform a systematic comparison of the different regularization methods (L1 and L2) and
optimization algorithms (IRLS, ADMM and FISTA) on simulated data in two- and three-
dimensions. The comparison evaluates the methods on the accuracy of image reconstruction;
ability to preserve edges; robustness against noise; and computational efficiency. Comprehensive
and robust qualitative and quantitative evaluations are performed to quantitatively compare the
reconstruction results using average contrast (AC), Pearson correlation (PC) and peak signal-to-
noise ratio (PSNR). To our knowledge, this is the first systematic study in the area of spectral
DOT reconstruction to perform such a comprehensive evaluation. We then apply our methods
to the reconstruction of functional activations in simulated human brain imaging data using
realistic anatomical models and finally evaluate the proposed algorithms using experimentally
acquired data, by imaging a tissue-mimicking, plastic phantom of known optical properties using
a multispectral DOT system.

The paper is organized as follows: Section 2 introduces the theory for image reconstruction in
SCDOT and proposes a new spectral-L1 inverse model; Section 3 investigates the performance of
the candidate three reconstruction algorithms for our proposed model; In section 4, a principled
method for selecting the regularization parameter is described; Section 5 presents extensive
comparative experiments in simulated models, and the results of experiments using tissue
phantoms. In section 6, the conclusions that can be drawn from our results are discussed.
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2. Theory

Image reconstruction in SCDOT aims to find the tissue composition that best explains the
boundary measurements. It typically requires the repeated evaluation of a forward model of
light propagation in biological tissues as part of an inverse model that minimizes the difference
between the measurements and the model’s predicted measurements. In this section, the forward
model for CW light propagation is introduced, followed by the spectrally constrained inverse
model. The L1 and L2 regularization methods for the inverse problem are described at the end of
the section.

2.1. The forward model

It is generally accepted that if the scattering coefficients dominate over absorption coefficients in
tissues and the region of interest is far from the light sources, light propagation can be modelled
by a diffusion equation (DE) [11]. The DE is able to generate isotropic fluence fields given a
distribution of source fibres and the tissue optical properties. For a CW system, the DE can be
written as

− ∇ · κ (r, λi) ∇Φ (r, λi) + µa (r, λi)Φ (r, λi) = q0 (r, λi) . (1)
Here, µa (r, λi) is the absorption coefficient at position r for wavelength λi , κ (r, λi) =

1/3[µa(r, λi) + µ′s(r, λi)] in which µ′s (r, λi) is the reduced scattering coefficient. Φ (r, λi) is the
photon density at position r and wavelength λi , and the isotropic source term at wavelength
λi is given by q0 (r, λi). It should be noted that in CW imaging, the value of µ′s (r, λi) is not
updated by the reconstruction algorithm and is assumed to be a known constant. The air-tissue
boundary is represented by an index-mismatched type III condition (Robin or mixed boundary
condition) in which the fluence at the edge of the tissue exits and does not return [39, 40]. A
finite element method (FEM) is used to numerically solve Eq. (1) on a discretized mesh, which
has been implemented in several open-source software packages, notably TOAST++ [41] and
NIRFAST [12]. In this work, the NIRFAST package is used for all computations.
In CW systems, the tissue absorption µa depends on the concentration of chromophores

in the tissue. The relationship between the absorption coefficients at different wavelengths is
therefore constrained by the intrinsic absorption properties of the chromophores via Beer’s law.
For a dual-wavelength imaging system, and for two chromophores, Beer’s law is written in
matrix-vector form as (

µa,λ1

µa,λ2

)
=

(
εc1,λ1 εc2,λ1

εc1,λ2 εc2,λ2

) (
c1
c2

)
, (2)

where c1 and c2 are chromophore concentrations and λ1 and λ2 are two measurement wavelengths.
In the remainder of the paper c1 and c2 correspond to oxyhemoglobin HbO2 and deoxyhemoglobin
Hb respectively, with λ1 = 750nm and λ2 = 850nm. εci,λi (i = 1, 2) are the extinction coefficients
of the two chromophores at the corresponding wavelength λi . The values of εci,λi have been
documented by Zeff et al (2007) [5].

2.2. The inverse model for SCDOT image reconstruction

In SCDOT, chromophore concentrations c1, and c2 are directly estimated from the boundary
measurements in preference to explicitly reconstructing optical properties at each wavelength.
The following SCDOT inverse model allows direct estimation of chromophore parameters from
two measurement wavelengths (i.e. 750 and 850nm) using some form of iterative procedure.
Using a block notation, in which ( ·· ) represents the concatenation of two column vectors, we
have:

c1, c2 = arg min
c1,c2






( ΦM
λ1
ΦM
λ2

)
−

(
Φ

C(k)
λ1

Φ
C(k)
λ2

)




2

2

, (3)
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where chromophores c1 and c2 are the model parameters to be recovered. ΦM
λi

(i = 1, 2) is the
measured fluence at the tissue surface and ΦC

λi
is the calculated data using the forward solver.

The superscript k denotes the iteration number. Eq. (3) defines a non-linear least square problem
which can be solved via the classical Gauss-Newton method in which the first order Taylor series
is used to expand the forward solution ΦC

λi
as

©­«
Φ

C(k)
λ1

Φ
C(k)
λ2

ª®¬ = ©­«
Φ

C(k−1)
λ1

Φ
C(k−1)
λ2

ª®¬ + Jk−1

(
ck1 − ck−1

1

ck2 − ck−1
2

)
, (4)

in which the spectral Jacobian J (also known as the sensitivity matrix) relates the changes in
boundary data to changes in chromophore concentrations and can be constructed directly with
the incorporation of spectral prior information using the adjoint method [42]. Note that when
k = 1, an initial guess of the chromophore concentrations c0

1 and c0
2 is required which can be

obtained by a data-calibration procedure explained elsewhere [43]. The spectral Jacobian J can
be derived as [44]:
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,

(5)
where Jλi relates the changes in boundary data to changes in the absorption coefficient at
wavelength λi . The size of J in this case is the number of wavelengths times the number of
measurements per wavelength, by number of finite element nodes times number of chromophore
parameters.
Substituting Eq. (4) into Eq. (3) leads to

∆ck = arg min
∆c

| |∆Φk−1 − Jk−1
∆c| |22, (6)

where ∆ck is the change in the chromophore parameters at the k-th iteration and can be written as

∆ck =

(
∆ck1
∆ck2

)
=

(
ck1 − ck−1

1

ck2 − ck−1
2

)
. (7)

∆Φ in Eq. (6) is the data-model mismatch which is given by

∆Φ
k−1 =

©­«
Φ

M
λ1
− ΦC(k−1)

λ1

Φ
M
λ2
− ΦC(k−1)

λ2

ª®¬ . (8)

Minimizing Eq. (6) leads to the normal equations(
J(k−1)TJ(k−1)

)
∆ck = J(k−1)T

∆Φ
k−1. (9)

which can be solved to find the update term ∆ck using the Gauss-Newton algorithm which is
summarized in Algorithm 1.
It is however non-trivial to calculate the inverse of J(k−1)TJ(k−1) in Eq. (9) (i.e. step 6 in

Algorithm 1) because it is normally singular or close to singular. Furthermore, experimental
noise in the measurements ΦM

λi
tends to lead to reconstruction artefacts if this inversion is

computed directly. Strategies that can be employed to invert such ill-posed matrices includes

                                                          Vol. 9, No. 4 | 1 Apr 2018 | BIOMEDICAL OPTICS EXPRESS 1429 



Algorithm 1: Gauss-Newton Algorithm for Minimizing Eq. (3).
INPUT: ΦM

λi
(i = 1, 2), iter , Tol

Initialize: c0
1 , c0

2
for k = 1 : iter
1: Update µa,λi at each wavelength using Beer’s law (Eq. (2))
2: Update ΦC(k−1)

λi
at each wavelength using the forward model (Eq. (1))

3: Update ∆Φk−1 using Eq. (8)
4: Stop if k = iter or | |∆Φk−1 − ∆Φk−2 | |1 6 Tol, otherwise go to step 5
5: Update Jk−1 using Eq. (5)
6: Update ∆ck = (J(k−1)TJ(k−1))−1J(k−1)T∆Φk−1

7: Update ck1 and ck2 using Eq. (7)
end for

RETURN ck1 and ck2

algebraic reconstruction technique (ART), truncated singular value decomposition (TSVD) or the
simultaneous iterative reconstruction technique (SIRT) [1, 11, 45–47]. Regularization can also be
employed to reduce model errors and artefacts caused by measurement noise. In the following
section, we introduce an L1-based regularization technique to solve this ill-posed inverse problem.

2.3. The proposed spectral-L1 inverse model

To convert Eq. (6) into a more readily solvable problem, a Tikhonov (L2) regularization term is
usually introduced into the inverse problem:

∆ck = arg min
∆c

{
| |∆Φk−1 − Jk−1

∆c| |22 + λ | |∆c| |22
}
. (10)

The regularization parameter λ determines the degree of regularization that will be imposed on
the model. This can be solved analytically to give

∆ck = (J(k−1)TJ(k−1) + λI)−1J(k−1)T
∆Φ

k−1. (11)

I is the identity matrix and its size is the same as that of J(k−1)TJ(k−1). The introduction of λI
effectively reduces the condition number of the matrix, thus stabilizing the matrix inversion. This
is widely known as the Levenberg-Marquardt algorithm and is in general more robust than the
Gauss-Newton method. An analytical solution to this problem is possible because Eq. (10) is
convex and quadratic which makes L2-norm regularization an attractive choice for many inverse
problems. However, in image reconstruction problems, it tends to over-smooth the result and
sharp features such as object boundaries in the reconstructed images are often smeared. Moreover,
L2-norm discourages sparsity, and is not suitable for sparse image reconstruction. In SCDOT
image recovery, the perturbation/change ∆ck is usually zero or close to zero when the region to
be recovered is not in the vicinity of the region of interest. In this case, ∆ck is spatially sparse.
Recently, L1 regularization has been widely studied because of several useful properties: it is
sparsity-promoting, convex, edge-preserving, and is more robust against noise. Therefore, we
propose a new inverse model for SCDOT image recovery based on L1 regularization that we
refer to as spectral-L1. This is formulated as

∆ck = arg min
∆c

{
| |∆Φk−1 − Jk−1

∆c| |22 + λ | |∆c| |1
}
. (12)

Although L1 regularization has many advantages over L2 regularization, the L1-norm is
non-differentiable, which makes it difficult to solve Eq. (12). Three candidate algorithms for this
task will be investigated in the next section.
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3. Candidate algorithms for solving the proposed spectral-L1 method

We now consider three algorithms for the solution of Eq. (12): iteratively reweighted least squares
(IRLS) [32]; alternating directional method of multipliers (ADMM) [33]; and fast iterative
shrinkage-thresholding algorithm (FISTA) [37]. These algorithms will be incorporated into the
image reconstruction process by substituting them into step 6 of Algorithm 1, which solves for
the update term.

3.1. IRLS

Instead of solving the L1-minimization problem directly, IRLS reformulates the problem as a
sequence of weighted L2 minimization problems. Specifically, by introducing a weight matrix W,
the L1 minimization can be converted into finding the optimal solution of the quadratic problem

∆ck = arg min
∆c

{
| |∆Φk−1 − Jk−1

∆c| |22 + λ | |W∆c| |22
}
. (13)

W is a diagonal matrix with weights, ws , along its diagonal that are given by

ws =

{
|∆ci−1

s |−0.5 if |∆ci−1
s | > ε

ε−1 if |∆ci−1
s | < ε

. (14)

The superscript i above denotes the i’th IRLS iteration (Algorithm 2), and it should be distinguished
from the superscript k denoting the iterations of Algorithm 1. A small positive number 0 < ε � 1
is used to avoid the possibility of division by zero. It has been suggested that ε should be a series
of positive real numbers that decay to zero over iterations [48]. In practice, we have found that
using a fixed value in the range 0.001 ≤ ε ≤ 0.01 does not give significantly different results. Eq.
(13) results in the normal equation(

J(k−1)TJ(k−1) + λWTW
)
∆c = J(k−1)T

∆Φ
k−1. (15)

This is known as the weighted L2-minimization scheme. We note that if the diagonal weights ws

are set to 1, the normal equation reduces to the conventional L2-minimization scheme (Eq. (11)).
The IRLS algorithm employing this method is summarized in Algorithm 2.

The calculation of the elements of W requires an initial guess for ∆c for which we use the
solution to the L2-regularized problem, Eq. (11). One of the biggest advantages of IRLS is that Eq.
(15) has an analytical solution which allows Eq. (13) to be solved exactly, making IRLS almost as
easy to implement as the Levenberg-Marquadt scheme. In common with many sparsity-promoting
optimization methods, the sparsity level in IRLS is controlled by the regularization parameter λ
which must be chosen carefully for each specific problem.

Algorithm 2: Iteratively Reweighted Least Square Algorithm (IRLS)
INPUT: ∆Φk−1, Jk−1, λ, iter , Tol
Initialize: Set ∆c0 using Eq. (11)

for i = 1 : iter
1: Update W using Eq. (14)
2: Update ∆ci = (J(k−1)TJ(k−1) + λWTW)−1J(k−1)T∆Φk−1

3: Stop if i = iter or | |∆ci − ∆ci−1 | |1 6 Tol, otherwise go to step 1
end for

RETURN ∆ck = ∆ci
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3.2. ADMM

ADMM has been widely used to solve optimization problems in machine learning, signal
processing, and standard image restoration and reconstruction. This method has become par-
ticularly important in the field of variational image processing, which frequently requires the
minimization of non-differentiable objectives [33,34,49,50]. It has been shown to be able to solve
constrained optimization problems effectively and efficiently. The basic idea is to decompose a
complex optimization problem into several simpler subproblems, which usually have closed-form
solutions [35]. Its simplicity, flexibility, and broad applicability have made it an important part of
the modern optimization toolset. To apply ADMM to our spectral-L1 problem, we first introduce
an auxiliary splitting vector variable v, an augmented Lagrangian multiplier b, and a positive
penalty parameter θ, reformulating Eq. (12) as the following unconstrained optimization problem

∆c, v, b = arg min
∆c,v,b

{
| |∆Φk−1 − Jk−1

∆c| |22 + λ | |v | |1 +
θ

2
| |v − ∆c − b| |22

}
. (16)

This multivariate optimization problem corresponds to a sub-minimization problem with respect
to ∆c, v and b, separately. When all the subproblems converge, the solution for ∆c approximately
represents that of Eq. (12). In order to find the minimizers for all of the subproblems, ADMM
searches all the saddle points of Eq. (16) by first fixing the variables (v, b) and minimizing the
subproblem with respect to ∆c using the following normal equation(

J(k−1)TJ(k−1) + θI
)
∆c = J(k−1)T

∆Φ
k−1 + θ

(
vi−1 − bi−1

)
. (17)

By inverting the matrix on the left-hand side of Eq. (17), a unique solution for ∆c is found. We
then fix variables ∆c and b and set the first order derivative with respect to v to zero. This leads to

λ
v

|v | + θ
(
v − ∆ci − bi−1

)
= 0, (18)

which can be solved component-wise using an analytical shrinkage-thresholding method to give

vi = max
(��∆ci + bi−1�� − λ

θ
, 0

)
◦ sign

(
∆ci + bi−1

)
, (19)

where ◦ and sign symbols denote component-wise multiplication and the signum function,
respectively. The last step of ADMM is to update the augmented Lagrangian multiplier b, as
bi = bi−1 + ∆ci − vi . The complete method is presented in Algorithm 3. The key advantage
of ADMM is that Eqs. (17) and (18) have closed-form solutions. We note that the augmented
Lagrangian multiplier means that different choices of the penalty parameter θ will provide similar
results but with different rates of convergence. In all the experiments we have conducted, we
used θ = 0.01 to achieve fast convergence.

3.3. FISTA

FISTA is a very efficient optimization approach that uses the forward-backward splitting technique
(FBS) [37,38]. It is an extension of the classical gradient descent method and therefore belongs to
the class of first order methods that are a better choice for large-scale problems than second-order
methods such as IRLS and ADMM because they do not require the explicit construction of
very large matrices. Let us consider minimizing the L1-regularized data fitting energy given
by Eq. (12). We begin by analyzing the standard unregularized problem with λ = 0. Let
F(∆c) = | |∆Φk−1 − Jk−1∆c| |22 and ∇F(∆c) = J(k−1)T(J(k−1)∆c − ∆Φk−1) denote its gradient. We
apply the gradient descent algorithm

∆ci = ∆ci−1 − t∇F
(
∆ci−1

)
, (20)
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Algorithm 3: Alternating Directional Method of Multipliers (ADMM)
INPUT: ∆Φk−1, Jk−1, λ, θ, iter , Tol
Initialize: v0 = 0, b0 = 0

for i = 1 : iter
1: Update ∆ci = (J(k−1)TJ(k−1) + θI)−1(J(k−1)T∆Φk−1 + θ(vi−1 − bi−1))
2: Update vi using Eq. (19)
3: Update bi = bi−1 + ∆ci − vi
4: Stop if i = iter or | |∆ci − ∆ci−1 | |1 6 Tol, otherwise go to step 1

end for
RETURN ∆ck = ∆ci

where t > 0 is a suitable stepsize which controls how far the iteration moves along the gradient
direction in the i’th iteration. The value of t is initialized by estimating the Lipschitz constant
L̃ of ∇F as L̃ = L (∇F) and then backtracking rules are adopted to guarantee that the objective
has decreased sufficiently [38]. The gradient iteration given by Eq. (20) can be understood as a
proximal regularization [51] of the linearized function F(∆c) at ∆ci−1, which corresponds to the
following optimization problem:

∆c = arg min
∆c

{
F

(
∆ci−1

)
+ ∇F

(
∆ci−1

) (
∆c − ∆ci−1

)
+

1
2t
| |∆c − ∆ci−1 | |22

}
. (21)

Analogously, adopting the same gradient descent idea to solve Eq. (12) with λ , 0 leads to the
following minimization problem

∆c = arg min
∆c

{
1
2t
| |∆ci−1 − t∇F

(
∆ci−1

)
− ∆c| |22 + λ | |∆c| |1

}
. (22)

Minimizing this results in a formulation similar to Eq. (18) and can be solved in the same way to
give

∆ci = max
(���∆ci−1 − t∇F

(
∆ci−1

)��� − tλ, 0
)
◦ sign

(
∆ci−1 − t∇F

(
∆ci−1

))
. (23)

The minimizer of the Eq. (12) can then be found by iterating ∆ci in Eq. (23) to convergence. In
isolation, Eq. (23) is known as the iterative shrinkage-thresholding algorithm (ISTA) [52–57],
whose global convergence rate is O(1/N), where N is the iteration counter. This is improved
upon by using a Nesterov-type acceleration technique to obtain faster convergence. In the FISTA
algorithm, the iterative shrinkage operator is not used on the value obtained from the previous
iteration ∆ci−1, but rather on a combination of the values from the previous two iterations. Thus,
in FISTA, Eq. (23) is replaced with

∆ci = max
(���∆yi − t∇F

(
∆yi

)��� − tλ, 0
)
◦ sign

(
∆yi − t∇F

(
∆yi

))
, (24)

where ∆yi comes from the prediction procedure given in step 4 of Algorithm 4. This step can
help to push the solution to the current iteration further in the direction it moved during the
previous iteration, which can significantly improve the computational efficiency. The complete
FISTA method is presented in Algorithm 4, where steps 2 and 3 implement the acceleration
strategy and can be viewed as an over-relaxation step that improves the global convergence rate
from O(1/N) to O(1/N2).

3.4. The spectral-L1 algorithm

We have introduced three methods for solving the chromophore update terms in SCDOT with a
sparsity enforcing constraint: IRLS, ADMM, and FISTA. These algorithms replace the single
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Algorithm 4: Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
INPUT: ∆Φk−1, Jk−1, λ, iter , Tol
Initialize: Set ∆c0 using Eq. (11), α0 = 1, t < 1/L̃

for i = 1 : iter
1: Update ∆ci using Eq. (24)
2: Stop if i = iter or the relative residual 6 Tol, otherwise go on to step 3
3: Update αi = (1 +

√
1 + 4(αi−1)2)/2

4: Update ∆yi+1 = ∆ci + (αi−1 − 1)/(αi)(∆ci − ∆ci−1)
end for

RETURN ∆ck = ∆ci

update term of the conventional reconstruction algorithm (step 6 of Algorithm 1). The flow-chart
presented in Fig. 1 shows how these proposed methods are integrated into SCDOT reconstruction
for CW imaging. Since the three proposed optimization schemes are themselves iterative, our
method contains nested iterations. In IRLS and FISTA, an initial guess for ∆c is required. We use
the standard L2-regularized solution (Eq. (11)). This is only required on the first iteration of the
outer loop.

No

Load mesh data

Calculate boundary data      
from direct fluence

Calculate direct fluence
and adjoint fluence with 
finite element method. 

Build Jacobian

L2 norm of          in 
subsequent iterations 

is fewer than a 
tolerance level?

Measurements

Yes

Get final 
reconstructed image

Solve
2

2 1
min

c
J c c


    

IRLS 
(Algorithm 1)

ADMM 
(Algorithm 2)

FISTA 
(Algorithm 3) 

Get update of chromophore
concentrations c

Update concentrations of 
chromophores



J

Fig. 1. Flow chart for SCDOT image reconstruction using the proposed spectral-L1 model.

4. Parameter selection

The regularization parameter λ determines the trade-off between the goodness-of-fit of the model
to the data, and the strict enforcement of the regularization criteria. An optimal value between the
two quantities must therefore be found: if too much regularization is imposed on the model, then
it will not fit the data properly; if the regularization parameter is too small, the fit will be good
but the solution will be dominated by data errors and measurement noise (the overfitting regime).
There are several methods to find an optimal compromise between these two considerations
and the L-curve method is both simple and effective. By plotting the model-data mismatch
| |∆Φ − J∆c| |22 against the model regularization | |∆c| |22 or | |∆c| |1 for a sequence of different λ,
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a curve which is typically L-shaped can be constructed. Figure 2 shows the L-curves obtained
from each of the four candidate optimization schemes using the numerical experiments described
by Zhan et al [44]. The optimal trade-off occurs at the “elbow” of the L-shaped curve and this
can be located by determining the point of maximum curvature of the curve.
Since strong regularization can improve the conditioning of the linear system, we solve the

formulations given by Eqs. (10) and (12) with a relatively large regularization parameter λ and
then decrease it gradually by a fixed factor until the curvature of the L-curve starts to decrease.
This corner point is considered to be at the optimum value of λ where both the model fit and the
regularization function are simultaneously near to their minimum values. In principle, computing
the L-curve requires the full image reconstruction process to be run multiple times which is
computationally very expensive. We have found that it is sufficient to compute the L-curve for
one iteration of the outer loop of Fig. 1, and then to use the resulting optimal value of λ for
the remaining iterations. In addition, in order to avoid the special case where the L-curve does
not allows an optimal value of λ to be found by purely numerical means [58, 59], we select a
range around the parameter with the highest curvature value. We then adjust the values manually
to get the final optimal parameter by visually inspecting the solutions and choosing the one
that generates the sparsest solution with a well-defined compact localization. This approximate
optimum is then used for subsequent iterations. We note that the choice of algorithm for L1
regularized reconstruction significantly affects the shape of the L-curve and the optimal value of
λ.

(a) (b) 

(c) (d) 

Fig. 2. L-curves (data fit against model regularization) derived from a synthetic example: a)
Tikhonov regularization; b) L1 regularization using the IRLS algorithm; c) L1 regularization
using the ADMM algorithm; d) L1 regularization using the FISTA algorithm. The optimal
regularization parameter is around the point of maximum curvature (within the red boxes).
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In addition to the regularization parameter λ that is common to all three L1 algorithms, we
have considered how to select the other parameters of each method to ensure that our comparison
is fair and unbiased. IRLS has one parameter ε and we set this to 0.001 ≤ ε ≤ 0.01 following the
recommendations set out by Shaw and Yalavarthy [48]. ADMM has one parameter θ and the use
of the augmented Lagrangian multiplier means that different choices of θ provide similar results
but lead to different rates of convergence. In all the experiments, θ was set to 0.01 to achieve
fast convergence. FISTA has two parameters t and α. t is initialized by estimating the Lipschitz
constant and then backtracking rules are adopted to guarantee that the objective has decreased
sufficiently [38]. t is therefore updated automatically. α is involved in an over-relaxation step
(i.e. step 4 in Algorithm 3) and its update is also automatic (i.e. step 3 in Algorithm 3). The
regularization parameter λ is therefore the only parameter that must be optimized for a specific
problem.

5. Experiment setup

We have performed extensive experiments to evaluate the performance of different models and
algorithms qualitatively and quantitatively. We first define three evaluation metrics to quantify
the quality of the reconstructed images. We then describe simulated numerical experiments, and
then real experiments performed on phantom samples. For experiments in which measurement
noise was added, ten repeats were performed. In all cases, the forward model was implemented
using the NIRFAST package [12] in Matlab R2013a (Mathworks, Natick, USA).

5.1. Quantitative evaluation metrics

Three quantitative evaluationmetrics are considered: the average contrast (AC), Pearson correlation
(PC) and peak signal-to-noise ratio (PSNR). Ideally, if the reconstructed image is exactly same as
the ground truth image, AC is equal to 1. For PC and PSNR, the recovered image has higher
quality if higher PC or PSNR values are obtained.
Average constrast (AC) is based on the mean value of the region of interest and is defined as:

AC =
∑N

j=1 c j
i /N

c̃i
i = 1, 2 (25)

where c j
i denotes the recovered values of chromophore i on the finite element node j. N is

the number of nodes in the activation region which is selected by thresholding the recovered
changes based on 50% of the maximum recovered changes. c̃i are the ground truth values of the
chromophores in the activation region.
The second evaluation metric PC is given by

PC =
COV (ci, c̃i)
σ (ci)σ (c̃i)

i = 1, 2. (26)

The numerator is the covariance (COV) of the recovered images with the ground truth and σ
indicates standard deviation. The PC is thus a measure of the joint variability of the ground truth
image with the reconstructed image.
Finally, PSNR evaluates the difference between the ground truth image and the recovered

image. Larger PSNR values means less difference between the target and the recovered image.
This measure is defined as follows

PSNR = 10 · log10

(
MAX2

ci

MSE

)
i = 1, 2. (27)
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Here, MAXci is the maximum pixel value of ci and MSE is the mean squared error between the
reconstructed and ground truth values.

MSE =
1
N

N∑
j=1

(
c j
i − c̃ j

i

)2
(28)

For AC, values closer to 1 indicate better performance. For PC and PSNR, higher values are
better.

5.2. Three-dimensional head numerical experiments

We first evaluate our proposed methods using a physically realistic three dimensional head model
derived from T1-weighted MPRAGE scans originally acquired by Eggebrecht et al [8] that were
kindly provided to us by the authors of that work. Following the process described by Wu et
al [60], Statistical Parametric Mapping (SPM) software [61] was used to perform a parametric
segmentation of the 5 tissue types (scalp, skull, cerebrospinal fluid (CSF), gray matter, white
matter) based on the pixel intensity probability function distribution. These five different layers
were then further processed in NIRFAST to create masks and layered volumetric FEM meshes.

Scalp Skull CSF 

Gray matter White matter Overall 

Fig. 3. Three-dimensional surface mesh for each of the five head layers.

Fig. 4. Schematic view from three directions showing the distribution of the imaging array
with 158 sources (blue circles) and 166 detectors (red circles).

The mesh is composed of 101046 nodes corresponding to 589658 tetrahedral elements. Each
node is labelled by one of the five segmented head tissue types, as shown in Fig. 3. Chromophore
concentrations assigned to each layer are computed from the tissue optical properties at 750nm
and 850nm in a previous in vivo study [62] (Table 1) using Beer’s law andMie scattering formulae.
A high-density (HD) imaging array containing 158 sources and 166 detectors (Fig. 4) [8] was
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placed over the whole head, with source-detector (SD) separation distances ranging from 1.3
to 4.8cm. In this study, 3478 differential measurements per wavelength were used to image the
hemodynamic changes in the brain. Two individual activations were simulated in the visual
cortex with chromophore concentrations of HbO2 and Hb respectively increasing to double the
background level in the gray matter (Fig. 5). Each simulated activation has a radius of 5mm. 0%
to 2% distributed Gaussian noise at 0.5% intervals was added to the measurement vector.
Reconstructed chromophore concentrations of the simulated activation using the Tikhonov

model (Eq. (10)) and the spectral-L1 model (Eq. (12)) on noise-free data are displayed in Fig. 6,
while those on data with 1% Gaussian noise are displayed in Fig. 7. We only show the area
with changes in chromophore concentration greater than 0.0001mM. Compared to the results
from the spectral-L1 model, Tikhonov reconstructions have lower image contrast, which can be
clearly seen from the first column of Fig. 6 and Fig. 7. Some artifacts (areas contained within
green ellipses) can be easily observed around the source and detector areas. With increased
levels of noise, larger artefacts are seen with Tikhonov regularization and the results are spatially
smeared. In contrast, results from the spectral-L1 model show fewer artifacts in the non-activation
area. Higher noise does not noticeably affect the L1-regularized reconstructions. IRLS produces
visually more compact localizations than ADMM and FISTA, whilst ADMM appears to have
better sparsity-inducing properties compared with IRLS and FISTA.

Table 1. Head tissue optical property for each of five layers.
Scalp Skull Cerebrospinal Fluid(CSF) Gray Matter White Matter

c1 (mM) 0.0575 0.0438 0.011 0.0548 0.0683
c2 (mM) 0.0313 0.0209 0.0083 0.0354 0.0273

Scattering amplitude 0.53 0.7258 0.3 0.5040 0.8176
Scattering power 1.1599 0.8987 0.9e−6 1.7757 1.3048

µa (mm−1)at 750nm 0.017 0.012 0.004 0.018 0.017
µ′s (mm−1)at 750nm 0.74 0.94 0.3 0.84 1.19
µa (mm−1)at 850nm 0.019 0.014 0.004 0.019 0.021
µ′s (mm−1)at 850nm 0.64 0.84 0.3 0.6726 1.0107

(a) 

(b) (c) 

(d) (e) 

Fig. 5. Ground-truth image with the activation only exists in the gray matter and white
matter. (a): Illustration of the overall distribution of slices. (b)-(c): Individual activation is
color-coded in red and represents the individual simulation of HbO2. (d)-(e): Individual
activation is color-coded in green and represents the individual simulation of Hb.

Evaluation metrics from this experiments are shown in Fig. 8. It is clear that the spectral-L1
model can achieve higher AC, PC and PSNR values than the Tikhonov model which means
higher image contrast and accuracy can be achieved with L1 regularization. Although the results
of FISTA show more visual artifacts than other L1-norm methods, it is still able to produce
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Tikhonov IRLS ADMM FISTA

2HbO

Hb

2HbO

Hb

Fig. 6. The reconstructed image of the change of HbO2 and Hb in mM with noise-free data.
Some examples of reconstruction artefacts are highlighted in green ellipses.

Tikhonov IRLS ADMM FISTA

2HbO

Hb

2HbO

Hb

Fig. 7. The reconstructed image of the change of HbO2 and Hb in mMwith data contaminated
by 1% Gaussian noise. Some examples of reconstruction artefacts are highlighted in green
ellipses.

better performance based on the metrics. This is because (i) AC is defined on the activation
region which is selected by thresholding the recovered changes based on 50% of the maximum
recovered changes, artefacts away from this region do not influence this metric; (ii) By the other
metrics (PC and PSNR), the improved ability of FISTA to localize the activation is sufficient to
counteract the effect of the artefacts.
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Fig. 8. Evaluation metrics comparing the performance of different methods on a simulated
3D head model at five different noise levels. Left to right column: AC index; PC index and
PSNR index. The first row gives the results from HbO2; the second row from Hb.

5.3. More realistic three dimensional head numerical experiments

Following the proof-of-concept experiments described in the previous section, we extended our
analysis to a more realistic case with much smaller changes in chromophore concentrations. In
the activation area we model a small region with changes in HbO2 (c1) of 5µM and Hb (c2) of
−5µM, relative to the background concentrations given in Table 1 (Fig. 9). The mesh is the same
as that used in the previous section. In line with the expected in vivo performance of imaging
systems, 0.12%, 0.15%, 0.41% and 1.42% Gaussian random noise was added to first (13mm),
second (30mm), third (40mm) and fourth (48mm) nearest neighbour measurements to provide
realistic data [63].

Fig. 9. Ground-truth image showing the change in chromophore concentration confined to
the gray matter.

Reconstruction using the four methods considered here are shown in Fig. 10 with noise-
free and noisy simulated data. With reference to results shown earlier in this paper, we make
a similar observation that in comparison to the ground truth values, results using Tikhonov
regularization are visually inferior to those fromL1 regularization.With increased noise, Tikhonov
regularization performs progressively worse with more artefacts visible in the source-detector
areas. L1 regularization induces sparse results with fewer artefacts in non-activated areas. Visual
inspection of the results from the three L1 algorithms suggests that IRLS produces over-sparse
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reconstructions with strong activations confined to a small area. ADMM and FISTA results are
much more visually realistic and they are seen to give higher quantitative accuracy. A quantitative
evaluation using AC, PC and PSNR is given in Table 2 and Table 3 and these support the
conclusion that even at small changes in chromophore concentration, the spectral-L1 model can
still guarantee higher image contrast and accuracy, with FISTA performing consistently better by
all measures (AC closer to 1, higher PC, higher PSNR).

Tikhonov IRLS ADMM FISTA

Hb

2HbO

Hb

2HbO

Without noise

With noise

Fig. 10. Reconstruction of HbO2 and Hb using (L-R): Tikhonov for L2-norm regularization;
IRLS, ADMM, FISTA algorithms for L1-norm regularization with different noise levels.
First two rows: results with clean simulated data; Last two rows: those with noisy data.

Table 2. Three evaluation metrics for HbO2 on results by different methods
Without noise With noise

Tikhonov IRLS ADMM FISTA Tikhonov IRLS ADMM FISTA
AC 0.7180 0.8132 0.8367 0.9069 0.6674 0.7188 0.7294 0.7556
PC 0.9997 0.9998 0.9998 0.9999 0.9973 0.9996 0.9996 0.9998

PSNR 73.8062 76.4843 77.3333 78.5520 38.082 63.7853 67.9154 73.4270

Table 3. Three evaluation metrics for Hb on results by different methods
Without noise With noise

Tikhonov IRLS ADMM FISTA Tikhonov IRLS ADMM FISTA
AC 0.8570 0.9394 0.9577 0.9736 0.7200 0.9086 0.9107 0.9299
PC 0.9997 0.9997 0.9998 0.9998 0.997 0.9996 0.9996 0.9996

PSNR 76.1785 76.9921 78.9364 79.0713 40.5900 66.3472 75.0008 76.2553

5.4. Experiments with phantom data

To evaluate the proposed algorithms on real experimental data, a multispectral, non-contact
CW-DOT system designed for hand imaging [64,65] was used to image a solid plastic cylindrical
phantom (INO, Quebec, Canada) of radius 12.3mm and length 50mm. Boundary data was
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collected at five wavelengths (650nm, 710nm, 730nm 830nm and 930nm), in a transmission
setup with a 7 x 5 grid of source positions on the underside of the phantom and a 11 x 9 grid of
virtual detectors on top, displayed in Fig. 11(b). The spatially constant, but spectrally varying
optical properties of the phantom were measured previously in time resolved experiments [66].
The absorbing dye within the phantom was treated as a chromophore that has unit concentration
in the bulk of the phantom, the extinction coefficient of which was modelled by the measured
absorption coefficient. A heterogeneous version of the phantom was imaged which contained a
cylindrical rod of radius 3mm and length 50mm, at a depth of 5mm (Fig. 11(a)). The rod has twice
the absorption coefficient of the bulk phantom which provides a 2:1 contrast in dye concentration
compared to background (Fig. 12 left). A homogeneous version was also imaged, enabling
calibration of the model/data mismatch and any source or detector coupling variation. The mesh,
as shown in Fig. 11(a), consists of 85,205 nodes and 451,821 linear tetrahedral elements.

( )a ( )b

Fig. 11. (a): Illustration of the overall distribution of slices. (b): Distribution of sources and
detectors.

Ground truth data and images reconstructed with L2 and L1 methods are shown in Fig. 12
respectively. The experiments described in the previous sections showed that the particular choice
of L1 method makes only a very small difference to the quality of the reconstruction, but there
are very large differences in computational efficiency, with FISTA being far more efficient in
this domain because of its superior ability to deal with large problems (as will be shown in
section 5.5). Therefore in this experiment, we only use FISTA as the L1 solver. It can be clearly
observed from Fig. 12 that L2 regularization over-smooths the reconstructed images which have
much lower image contrast than the ground truth. Some artefacts can be seen in the source and
detector areas. We note that only the central region can be reconstructed in both cases because the
sources and detectors are confined to this region, with very low sensitivity away from the centre.
The image contrast reconstructed by L1 regularization is much closer to the ground truth but with
more compact results. We calculate the three evaluation metrics in the volume of illumination
(Table 4) and these support the same conclusions.

5.5. Comparison of CPU time consumed in the inverse model

We now compare the computational efficiency of the proposed methods. All experiments are
performed using Matlab 2013a (Mathworks, Natick, USA) on a Windows 7 (Microsoft, Redmond,
USA) platform with an Intel Core CPU i7-6700 at 3.40GHz and 64.0GB memory. The simulated
experiments described in section 5.2 were used to perform this comparison. CPU times used in the
inverse procedure only are measured. We run each method over ten realisations of noise at each
of five noise levels to obtain reliable statistics. Figure 13 shows the CPU time consumed for the
four different methods (Tikhonov, IRLS, ADMM, FISTA). In order to display the recorded times

                                                          Vol. 9, No. 4 | 1 Apr 2018 | BIOMEDICAL OPTICS EXPRESS 1442 



( )c

Fig. 12. Ground truth and reconstruction results with different regularizations. From left
to right: ground truth; results with L2 regularization; results with L1 regularization using
FISTA algorithm.

Table 4. Evaluation of L1 and L2 regularization methods for reconstruction of a single rod
inclusion in a tissue-simulating phantom.

L2 Regularization L1 Regularization with FISTA
AC 0.7187 1.1387
PC 0.6617 0.7263

PSNR 13.7472 13.8821

from ten repetitions clearly, CPU times for one iteration of the outer loop of the reconstruction
algorithm are shown in Fig. 13. Total CPU times for iteration to convergence are given in Table 5.
FISTA is clearly the fastest L1 regularization method amongst those considered here, and

it is faster even than Tikhonov regularization which does not use an inner iteration. FISTA
only involves the computation of JTJ which is much more computationally efficient than the
computation of JJT. IRLS and ADMM are substantially slower because they require an inner
iteration and inversion/multiplication of large matrices.
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Fig. 13. Total CPU time consumed in the experiments described in section 5.2
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Table 5. Total CPU time(s) consumed in the inverse model for the experiments described in
section 5.2

Evaluation metric CPU time (Mean±SD)
Chromophore 0% 0.5% 1% 1.5% 2%
Tikhonov 42.7902±0.211 33.4124±1.120 35.4658±1.399 33.4156±1.607 14.5622±1.463
IRLS 10171.96±0.019 10171.95±1.414 6823.03±0.896 6821.99±0.912 6822.01±1.274

ADMM 9100.34±0.508 7444.31±1.373 6195.01±1.583 4193.57±1.442 2892.30±1.200
FISTA 2.532±0.092 1.964±0.193 1.844±0.154 1.850±0.218 1.927±0.307

6. Conclusion

In this paper, a new model for spectrally constrained DOT reconstruction with L1 regularization
is proposed. Numerical experiments showed that compared to the L2-norm, L1 regularization can
reduce crosstalk and maintain image contrast by inducing sparsity. These findings were tested
on real experimental data using a tissue-simulating phantom and similar results were found.
Although all L1-based methods perform similarly in terms of reconstruction quality, FISTA
performs marginally better than ADMM and IRLS by the measures of AC, PC, and PSNR, and is
far more computationally efficient as it avoids direct matrix inversion and large matrix-matrix
multiplications.
The contributions of this paper can be summarized as follows: 1) It is the first time that

L1 regularization methods and spectrally constrained DOT methods have been used together
and it is their combination (i.e. spectral-L1 model) that is original. We have given detailed
descriptions of how this can be done, and performed systematic comparisons of the performance
and efficiency of the different methods on both simulated and real data. We are not aware of any
previously published work that proposes such a model and performs such a detailed analysis
of its performance; 2) We have developed a method to automatically select the regularization
parameters. This is based on the L-curve method but is modified for efficient application in this
use-case; 3) We have conducted extensive numerical experiments on simulated data and on real
experimental data, and have performed comprehensive and robust qualitative and quantitative
evaluations. To the best of our knowledge, this is the first systematic study in the area of spectral
DOT reconstruction to perform such a comprehensive evaluation.
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